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_I \ X ABSTRACT g
This report describes a system by which an autonomous land vehicle might improve :

its estimate of its current position. This system selects visible landmarks from a data-

base of knowledge about its environment and controls a camera's direction and focal

' length to obtain images of these landmarks. The landmarks are then located in the im- "
ages using a modified version of the generalized Hough transform and their locations are g
used to triangulate to obtain the new estimate of vehicle position and position uncertain- ¥
ty.
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1. Introduction

The research described in this report is part of a larger project which has as
its final goal the demonstration of an autonomous, visually guided, land vehicle
[Davig85, Waxm85]. The vehicle will reach a desired destination by planning and
following dynamically chosen and revised paths. As planning proceeds, the vehi-
cle is commanded to move from point to point. However, errors in this move-
ment create a positional uncertainty proportional to the distance travelled. It is
therefore desirable to have a sub-system which can re-calculate the current posi-
tion and reduce the uncertainty to within acceptable limits. A collection of algo-
rithms for such a system has been designed and partially implemented in a
research environment. The system uses the knowledge of the vehicle’s approxi-
mate position to visually locate known landmarks. It then triangulates using the
bearings of the known landmarks to acquire a new position with a reduced uncer-
tainty.

The system is composed of three modules, called the MATCHER, the
FINDER, and the SELECTOR, that interact to establish the vzhicle’s position

with a new level of uncertainty.

1) The MATCHER locates likely positions for one or more landmarks in an

image, and rates these locations according to some measure of confidence.
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2) The FINDER controls the pointing direction and focal length of the cam-
era to acquire specified images for a set of landmarks and directs the MATCHER
to find possible locations for these landmarks in the images. It then eliminates
possible locations for individual landmarks which are not consistent with the pos-
sible locations found for other landmarks. The FINDER then evaluates the
remaining possible locations to determine the actual locations of the given land-

marks.

3) The SELECTOR identifies a set of landmarks whose recognition in images
of appropriate angular resolution would improve the position estimate of the
vehicle by the desired amount. It then directs the FINDER to establish likely
locations in such images for subsets of those landmarks. With these locations,
the SELECTOR then computes new estimates of the vehicle position and posi-
tion uncertainty and directs the FINDER, if necessary, to locate additional sub-

sets of landmarks.

We assume the vehicle’s camera is mounted on a computer controlled pan
and tilt mechanism and has a computer adjustable focal length. We also assume
estimates are available for the heading of the vehicle, as well as the current set-
tings of the pan, tilt, and focal length of the camera. A database of landmarks
exists that includes all pertinent landmark qualities, such as size and position,
and at least one representation of each landmark from which it could be recog-

nized in an image.

Chapter 2, 3, and 4 describe the MATCHER, FINDER, and SELECTOR,

repectively. In Chapter 5, we describe an implementation of the algorithms.
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8 Related literature is discussed in Chapter 6.
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2. The MATCHER

2.1. Overview

A generalized Hough transform is employed to locate landmarks of known
image orientation and scale. The landmarks are represented by lists of boundary
points which are individually matched to edge points in the image. The algo-
rithm consists of three main phases: edge point detection, matching of the tem-
plate to the edge points, and interpreting the results of the matching. Edges are
detected as points where the Laplacian changes sign and the local grey levels
have a high symmetric difference. Matching is done using the generalized Hough
transform and is restricted in two ways. First, template points match only points
having close to the same gradient direction. Second, only those template points

are used whose gradient directions have a high measure of informativeness; this

measure is defined in Section 2.3.3. Throughout this chapter, the description of
the algorithm will be supplemented by references to the two examples in Figures ]

2.1 and 2.2.

2.2. Getting the edge image

The image given is a grey-level picture (Figures 2.1a and 2.2a). It is first
smoothed using a local edge-preserving smoothing operator. This operator, the e

symmetric nearest-neighbor algorithm, can be computed on any size neighbor- .




hood, but is simplest to describe for a 3x3. A brief description of the 3x3 algo-

rithm is provided below; for a full explanation see Harwood, Subbarao, and Davis

[Harw84).

For each pixel p in the image, consider a 3x3 neighborhood. For each pair
of symmetrically opposed neighbors, choose the neighbor whcse grey level is
nearest in value to the center pixel's. In the case of a 3x3, there will be four
pairs and thus four points chosen. Replace p with the mean of these points.
One could also use the median of the four points, which results in better preser-
vation of corners; however it is slightly slower than using the mean and often the

improvement is not enough to warrant the extra time.

The implementation used in this thesis is a 5x5 version of this algorithm
with the mean computed for the nearest neigbors. Also, since the algorithm’s

results improve with iteration, two iterations are done on the image (Figures 2.1b

and 2.2b).

A neighborhood size for the Laplacian, which is appropriate for the size of
the object being sought, is then selected and the Laplacian is convolved with the
smoothed image. At present, this selection is done manually and usually the size
is very small, such as 3x5 or 3x7. !lowever, the selection could be done automat-
ically using such criteria as image size of the object or density of edge points, or

average local standard deviation of edge direction.

At any point where the Laplacian crosses zero (a positive pixel with a nega-

tive neighbor), the local symmetric contrast is computed. This is done by taking




the maximum absolute difference in grey level of any two symmetrically opposite
points in a 3x3 neighborhood. This is a fast and isotropically smooth edge
strength measure and is used to eliminate all the false or weak edge points given
by the zero-crossing of the Laplacian. Using this measure of edge strength, the
weakest 75 percent of the zero-crossing points are eliminated. The resull is an
image of thin contours (due to the zero-crossing operator) whose edge strength is
significant (Figures 2.1c-e and 2.2c-e). Many of the contours are often broken by
single pixels of low contrast, but this does not affect the matching procedure
which matches patterns of individual points and not patterns of extended con-

tours.

2.3. Matching

A generalized Hough transform (GHT), incorporating the gradient direction
at points, is used to perform the matching. The GHT and the specific implemen-

tation used are described in Section 2.3.1. Certain assumptions made regarding

the orientation and scale of the object in the image are explained in Section 2.3.2.
Finally, a discussion of the gradient direction informativeness measure introduced

in Section 2.3.1 is given in Section 2.3.3. 1

2.3.1. The generalized Hough transform

The generalized Hough transform is a fast point pattern matching algorithm
that can be used to detect arbitrary specific shapes in images (see [Ball81] and
[Davi82]). The general problem solved is to find the function that best

transforms a set of object points (i.e., the shape) into a set of image points. This
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function will be in terms of the parameters allowed to vary in the transformation.
The result of the generalized Hough transform is a ‘“Hough space” which indi-
cates the likelihood of any particular transformation being the correct one for the
given object and image. In our application, we are only concerned with finding a
transformation function that performs translation in a plane. All other transfor-
mation parameters (such as image scale and orientation) are assumed to be fixed

and known.

In our implementation, the object points are the boundaries of a landmark
being viewed from an (approximately) known direction and distance. The image
points are those found using the edge finding algorithm cescribed in the previous
section. The gradient direction is calculated at both object points and image
points. Figures 2.1f and 2.2f show the edges used in the image with the gradient
directions represented by grey levels. Figures 2.1g and 2.2g show the edges and

directions of the object boundaries. The object points are organized into an

“offset table” indexed on the gradient direction with a set of (x,y) pairs for each
gradient direction. The (x,y) pairs indicate the offsets to some arbitrary reference
point. We have used the centroid of the boundary points as the reference point.

For n gradient directions, the table is of the form

Offset Table
Gradient Direction Offsets to reference peint R
o1 (ep tdy (oot o - o (8motm
b2 (33, t1)oy (82 to)n . - (8 tp )0
Pn (21 t)a, (82 ta)ny - -y (25.00)s




Each edge point in the image with gradient direction ¢, may correspond to

one or several object points with gradient direction ¢,. For each possible
correspondence, there will be a potential reference point. The positions of the
reference points, relative to the edge point, are given by the (x,y) pairs for ¢, in
the offset table. Therefore, at each edge point e in the image with gradient direc-
tion ¢,, the set of possible reference points can be obtained by adding each offset
for gradient direction ¢, to the position of e. The generalized Hough transform
operates by incrementing, in ar accumulator array, all the possible reference
points for each edge point in the image. The accumulator array is the Hough

space mentioned above.

In the general case, the maxima in the array A represent the most likely parame-
ter values which would characterize the best transformation functions from the
object to the image. In our case, the maxima in A represent possible locations for

the object in the image.

2.3.2. Orientation and scale

As mentioned above, we assume we know the orientation and scale of the
object in the image within a given tolerance. The template can therefore be
scaled and rotated to match the appearance of the obiect in the image. This
eliminates the necd for the generalized Hough transform to include scale and

orientation parameters; however, the implementation used should allow for errors

in both parameters. This section describes how our implementation allows for




small errors.

Orientation errors effect the algorithm through mismatches of gradient direc-
tion between image edge points and boundary points in the template. A
mismatch can occur because of errors in the measurement of the g adient direc-
tion, noise near the edge point in the image, actual local differences between the
object’s silhouette in the image and the template, or a grossly inaccurate assump-

tion of the orientation of the object in the image.

Two measures have been taken in an effort to increase the likelihood of the
correct reference point being incremented for each of ihe above cases. First,
when the gradient direction is calculated, it is rounded to the nearest 10 degrees.
Second, during the matching process, instead of matchinrg points only when their
gradient directions are equal, edge points with gradient directions within %15

degrees of a template point’s gradient direction are also matched.

Small errors in scale effect the algorithm by incrementing points in the
Hough space which fall just short or just long of the actual reference point. This
will create a faint inverse silhouette of the object in the Hough space whose size
indicates the magnitude of the scaling error. When the error is very small (one or
two pixels), the inverse silhouette is just a small diffuse dot. Post-processing of

the Hough space can therefore find the center of the dot by local averaging.

2.3.3. Gradient direction informativeness

It can often occur that one or several gradient directions are so prevalent in

the image that they produce strong voting clusters in Hough space at incorrect



locations. If a gradient direction occurs at N edge points in the image and at M
template boundary points, then MxN increments are made for that gradient
direction in the Hough space. Since usually only a small fraction of the edge
points in the image are part of the object’s boundary, the remainder of the

matches can potentially contribute to false peaks in the Hough space.

Also, if a gradient direction is prevalent in the template, then, as a group,
points with that gradient direction will contribute more correct votes than would
points with an infrequent gradient direction. This is, of course, because there will
be more boundary points with the prevalent gradient direction incrementing
potential reference points. Therefore, when the reference point happens to be the
correct location for the object, more of the votes contributing to its peak will
come from points with the prevalent gradient direction than from points with an

infrequent gradient direction.

To use these observations to best advantage, a measure of gradient direction
informativeness (GDI) was developed to rate the gradient directions. Then, only
those points whose gradient directions rate highly are used in the matching. In
this way, we can eliminate the uninformative sources of spurious patterns ‘n the

Hough space and make best use of the most informative points. The measure

P[G |,
|

o) where P| G |; is the probability that gradient direction G occurs in
¥

used is

the template and P| G|, is the probability that gradient direction G occurs in the
image. The actual probabilities are extracted from histograms of the template

and the image. Based on this measure, only the most informative 15 percent of
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the edge points in the image are used in the matching. Consequently, boundary

points in the template whose grzdient directions are not selected will not be used.

It can be seen that gradient directions that occur often in the template but
infrequently in the image would rate very high on this scale. Also, gradient
directions with few occurences in the template but many in the image would rate
very low. Points with such gradient directions would yield a high number of

unrelated votes, cluttering the Hough space and creating false peaks.

This measure has proved very successful in several tests. Figures 2.3 and 2.4
show the Hough space for two pictures with varying degrees of filtering using the
gradient informativeness measure. It is clearly most useful when a few gradient

directions, which are not essential to locating the object, dominate the image.

Figure 2.5 shows the object points actually used in the matching for our two

examples. In each case, the most informative 15 percent were used.

2.4. Finding the peaks in the Hough space

The matching algorithm described in Section 2.3 produces a two-dimensional
Hough space the same size as the image being searched (Figs. 2.1h and 2.2h).
The local intensity peaks in this image represent possible locations for the object
in the image. To avoid making false conclusions when near ties occur, ‘we pro-
duce a list of the possible pcaks with their respective confidences. This allows
the decision about which peak represents the actual location to be passed to
higher level decision-making systems. The process of producing the list from the

Hough space can be thought of as several passes of simple neighborhood

-11-




operators:

(1)
(2)

(3)

Sum the votes in a KxK neighborhood.

Perform non-maximum suppression on a JxJ neighborhood, i.e., eliminate all
points having a neighbor in a JxJ neighborhood with a higher sum.

Compute confidences of the remawning points.

This process could be quite inefficient if it were computed on array-

formatted pictures of any significant size; therefore, some reasonable limits were

imposed on the numbers and values of points that were of importance at each

step in the process. The resulting algorithm, using these limits and lists of sorted

points, is as follows.

(1)

(2)
(3)
(4)
(5)

The N points having highest vote counts are selected and sorted into a list
on vote count. (N is selected to ensure not eliminating the correct object
location. Fifty has proved to be a sufficient number fcr all cases tried.)

All points whose vote count is below M percent of the highest value are
eiiminated.

For the remaining points, the vote count is replaced by a sum of the vote
counts in a K X K neighborhood and a new list sorted on this value.

In this new list, those points are again eliminated which are below M percent
of the highest in the list.

Non-maximum suppression is used to identify the local maxima. Starting at
the low end of the sorted list of summed points, each point, call it s, is com-
pared to each of the points below it. If a point, t, below point s is in a J xJ
neighborhood centered on s, then eliminate t. The algorithm must start at
the bottom of the sorted list so that points are not eliminated before they
have a chance of eliminating others.

A measure of confidence is now calculated for each remaining point. It is

designed to indicate both the strength of the peak and how it relates to other

surviving peaks. If it is necessary to compare confidence measures for peaks in

several images of different size and edge content, then this confidence measure

should be normalized.

-12.




{ If v, is the number of votes for location x (summed over a K xK neighbor-

& hood) and there are m possible positions, then the confidence measure is com- '
g puted as follows: 4
=
C; = ——Xx100 -
LV

In words, the confidence measure C, is the number of votes that location x
received (summed over a K x K neighborhood centered on x) expressed as a per- -
centage of the total votes given to all points (summed over K x K neighborhoods)

in the list of possible positions. ' J

Figures 2.1i-j and 2.2i-} show the most confident peak found using this algo-
rithm. The template boundary points are overlayed on both the Hough space

and original image.

1]
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2.6. Suggestions for improvements

Certain simplifying assumptions are made in the MATCHER. Although

some are reasonable for the intended application, in general the system is less

robust because of them. One such assumption, that the scale and orientation of
the landmark in the image are known, can be eliminated by including the scale

and image orientation of the landmark as parameters in the Hough transform.

g RN
P U S D U Y IR I

Although this would result in a four dimensional Hough space, the range of
values in each dimension could be limited and therefore make computation time

reasonable.

-13-
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A possible improvement to the MATCHER is, after a set of possible posi-
tions is found, to try to match the landmark model at these points without the
GDI filter that was applied in the first matching process. This would strengthen

and better delineate the actual location of the landmark.

14 -
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3. The FINDER

I 3.1. Overview

This chapter describes a strategy (the FINDER) for determining bearings to

a given set of landmarks. The FINDER is also given specifications for images in

which it can expect to find these landmarks. It then controls the camera to
obtain these images and uses the MATCHER to establish likely locations for the
'_l landmarks in their respective images. Since the search for any specific landmark
may result in several possible locations for that landmark (at most one of which,
-] of course, can be correct), we employ a simple geometric constraint propagation

algorithm to eliminate many of the false locations.

The geometric constraint propagation algorithm considers possible locations
for a pair of landmarks and determines if they cculd both be the correct location
for their respective landmarks. Two possible locations (or, more briefly, peaks)
‘ are called consistent if they meet this criterion. The details of this consistency
computation are described below. With consistency determined for all pairs of

peaks, a graph is then constructed in which nodes are peaks, and arcs represent

» . . . .
, the mutual consistency between two peaks. Analysis of this graph can determine
consistency among groups of more than two peaks and therefore eliminate peaks
> based on more than just pairwise inconsistency.
-
g
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3.2. Consistency between peaks

To determine consistency between two peaks », and p, for landmarks L, and
L, we first calculate a range of possible angular differences between L, and L,
based on the vehicle’s position uncertainty. We then extend this range by the

pointing error and check that the measured angular difference between p, and »,

falls within this range.! See Figure 3.1.

The angular difference between L, and L, is determined by simply taking the
difference of their bearings. The range of angular differences is then obtained by
letting the value for the current position vary according to the position uncer-
tainty of the vehicle. For the purposes of this analysis, we assume that the posi-
tion uncertainty can be represented by s solid disc on the local ground plane. If
we make the reasonable assumption that neither landmark lies inside the disc,
then it is easy to show that the positions which give the maximum and minimum
angular differences wiil always lie on the circumference of the disc. To prove

this, we give the following informal argument.

Assume the contrary, that p is a point inside the disk for which the angle

L,pL, is maximum. Consider a line which bisects this angle. Since p is inside the
disc, there must exist a point p’ on that line which is also inside the disk and is
closer to both L, and L, See Figure 3.2. Clearly the angle L,p’ L, would be
greater than LpL,. This contradicts our assumption.? A similar argument can be

applied if L,pL, is assumed to be a minimum.

PRI ,
R TR . R
e '.'.',','.'n' P
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1 We could also account for the error due to pixel size, but do not since it is negligible.

2 Note that this does not imply that the solution points will be at the intersection of the bisector and the circumfer- - _]
ence of the disk. We could find no such simple intuitive solation to this problem. S




From these positions we can then calculate directly the maximum and
minimum angular difference between L, and L, An abbreviated derivation of an

analytic solution for these points follows.

We define the positions of the two landmarks L, and L, to be (z,,y,), and
(z2,¥2)n, In map coordinates. The current vehicle is at (zq,y0)y, and the disk of
uncertainty is centered on this location and has radius r. We then transform all
locations from map coordinates into a coordinate system centered on the vehicle

position. All coordinates from now on will be in this new coordinate system.

Two lines with slopes m, and m, meet at an angle y (measured from line 1 to

line 2 counter-clockwise) given by

Mmq
= at —_
V= aton (3= (1)
I m=2"Y m,=¥2Y (zy4) is the vehicle'’s actual position, and
I,-2 ]

(z1,41) and (z,y.) are the locations of two landmarks, then equation (1) would

determine the angular difference between the two landmarks.

We can find the extrema of ¢ by differentiating equation (1) and setting it
equal to zero. Since (z,y) is constrained to lie on the disk’s circumference, we can

represent (z,y) as (rcosd,rsind). Note that there is only one variable, 4, since r is a

. -r sind reind . . . .
constant. This makes m,=y‘—— and my, = YT Differentiating equation
z,-r cosd zo-rcosd

(1) and simplifying, we obtain

-17-
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do do, 4 @
dy__ 149 a0 _ 1 do 40 _ 49 9
] »? t° 1% + 92 t2 t? + 82
l'i'—2 z
t ¢
with
y =2 -rcos 8(yz ~ y1) + Z,y2 - 2oy, - reiné(z, - z,)

TT Tein Oyz+y)+ viya+ 2122-rcosf{z; + z) + r?
Setting equation (2) to zero, we obtain

ds t—a-—d-"—=—N-Msin0—Pcoa0 (3)

0=77 70

where
N=r (& -y’ +27 -2%),

M=y y? + ylyz+ ziy2+ r{y, - vo) - 27y, , and

P=z,(-y7 -23)+z9% + 22,4+ r¥z,-22) .

Since cosf = =, sind = ¥, and y = VrZ- z2, we can rearrange equation (3) to get
r r
the quadratic
0= (P?+ M%)z%+ 2NMrz + (N%- P¥)r (4)

At the solution points to (4), we calculate the angle between the two indivi-

dual landmark points and subtract using the equation

:: 4 ) = atan (my) - atan {m,).

¢ = ¢ - ¢ = atan —

_Y ) - atan ( 17

z
Calculating ¢ for each solution, we get the maximum and minimum angular

differences between the two landmarks L, and L, given a position uncertainty of

+r.

-18-
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At this point we extend this range to allow for the pointing error of the

pan/tilt mechanism. This is done by simply adding the error to the range.

3.3. Consistency Graph Analysis

As mentioned above, the consistency graph represents consistency relations
between the possible locations for different landmarks. Ideally, we would want to
determine the maximal complete subgraphs (MCS's) of this graph because they
would represent the largest sets of landmark locations that are all mutually con-
sistent. For small graphs this is not impractical, but for large graphs we might

be forced, due to time constraints, to perform a simpler analysis.

We can, for example, apply certain simple iterative tests to the graph that
would eliminate any landmark location not part of at least a k-clique. In what
follows, we identify two simple tests for eliminating nodes not part of k-cliques.
These processes are similar to so-called ‘‘discrete relaxation” algorithms - see,

e.g., Haralick and Shapiro [Hara79).

First, we can iteratively eliminate all nodes which do not have arcs to nodes
representing at least k other distinct landmarks. After this process is complete,
we can then eliminate all nodes which are not the center of what we refer to as a
k-fan. A node n is the center of a k-fan if there exists a connected chain of
podes of distinet landmarks of length k-1 in which each element of the chain is
connected to n. Figure 3.4 contains an example of applying both node deletion
processes to a graph of landmark locations. Finally, we find all MCSs for this

pruned graph.

-19 -
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Since we could end up with several MCSs, we now need a way to determine
which is the actual set of landmark locations. To do this, we define an evalua-
tion function to operate on the MCSs and then pick the MCS which responds
best to the evaluation function. In our current system, we use a simple summa-

tion of the confidences for each of the possible locations.

...................
......................................................
............................................
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4. The SELECTOR

4.1. Overview _ i
This chapter describes a strategy (the SELECTOR) for selecting a set of

landmarks whose identification in appropriate images would improve the current ":h

estimate of the vehicle’s position. The SELECTOR supplies subsets of these

landmarks, with appropriate image specifications, to the FINDER which returns ‘

the most likely relative positions for each landmark in each subset. The SELEC- "-f

TOR then computes the vehicle’s actual location and the new uncertainty associ-

ated with it. If this new unceriainty is insufficient, then the SELECTOR can -]

either simply accept the new uncertainty as the best achievable result, or try to

further improve the position estimate using other landmarks.

Given a database of visual landmarks, a variety of strategies can be
emplcyed to select a subset of those landmarks for identification. The implemen-
tation of any of these strategies requires the ability to determine both the ease of
identification of any given landmark and the effect of its identification on ti.e
vehicle’s position uncertainty. The development of these abilities is described ir
Sections 4.2 and 4.3. Furthor discussion of the SELECTOR module continues in

Section 4.4. "]

-21-




4.2. Determining ease of identification

Many factors effect the ease of identification of a landmark. Some examples
are the size of the landmark in the image being matched, the stability and
geometric complexity of the landmark’s model from the current vantace point,
and the position of the sun. In a more sophisticated system, we may have infor-
mation about the visual surroundings of the landmark and be able to consider
the landmark’s relative uniqueness in the image as a factor. In this section we
consider two factors: 1) t'ie ability to obtain an image that will allow us to accu-
rately locate a particular landmark, and 2) the suitability of the landmark’s

model for use with the MATCHER.

4.2.1. Suitable image verification

The two quantities that determine an image are direction and focal length
(or field of view). The direction is constrained by the fact that extremely bright

scenes (i.e., those containing light sources) will most likely saturate the camera

and result in a pure white or washed out image. It would clearly be futile to 5

search for a landmark in such an image. The directions in which these scenes

L
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might occur could be predicted by using special instruments or by analyzing -
failures of the MATCHER. To determine the camera direction, we simply use

the bearing of the landmark with respect to the current presumed vehicle posi-

bl

tion. This can be calculated straightforwardly from the coordinates of the land-

mark and vehicle. We can then verify that the camera does not point towards a

. AT
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“bright scene”.

ls
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There at least four constraints on the appropriate focal length for a suitable
image.

(1) The focal length must be short enough for the image to contain the land-
mark after accounting for all the errors in our estimation of its position.

(2) The focal length must be long enough to insure that locating the landmark
would improve the position estimate.

(3) The focal length must be long enough to guarantee that the andmark will
appear in the image with a size (in pixels, large enough for it to be r-liably
located.

(4) The above three constraints must be satisfied by at least one focal length
within the available range of focal lengths for our imaging system.

The first three constraints are discussed in the next three sections. The last

constraint and the verification process are addressed in the following section.

4.2.1.1. Determining the minimum field of view

In order to insure that we obtain an image large enough to contain a partic-
ular landmark, we need to know the physical size of the landmark, its positicn,
the vehicle's current position, the vehicle’s current position uncertainty, and the
pointing error of the camera control system. These parameters determine the field

of view (fov) necessary to include the landmark.

To determine the minimum field of view needed, we use a method illustated
in Figure 4.1. The factors considered are the size of the landmark and our ability
to point the camera at the landmark. Our ability to point the camera in the
correct direction depends on how well the landmark’s bearing can be approxi-
mated from our current position, and how precisely the camera can be point~d in

that direction.
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Our approximation of a landmark’s bearing can only be as accurate as our
approximation of the current vehicle location. If a set of halflines, emanating
from a landmark, are extended through all the possible vehicle locations, then
they form a wedge with an angular width 6. This angle ¢ is the amount of angu-
lar uncertainty with which either the landmark or the vehicle could locate each

other.

Now, a landmark L with width W will subtend an angle 4 in the field of
view which depends on the distance D to the landmark. Since the focal length
will be very small compared to the distance, D, to the landmark, we can approxi-

mate D - focal length , the distance from the landmark to the center of focus, by

D. Therefore, L subtends approximately ¢ = arctnn(%).

The camera control mechanisms will ccrtainly have an inhereat angular
uncertainty error (pointing error) which we will denote by y. The same will b2
true of the heading feedback equipment and we will denote this orientation

uncertainty by a.

We can now simply add these four angular uncertainties together to arrive
at a total field of view which, if centered on our best approximation of the land-
marks location. will be guaranteed to contain the landmark. Therefore, the

minimum fov for L is,

minimem-FOV = 0+ oo+ ¢+ a .

For a camera with a digitizing surface of size fs {in millimcters), the minimum-FOV

can be obtained by using a focal length max-8 given by

-24-
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fs

max-fi = tan({minimum-FOV)

4.2.1.2. Satisfying the accuracy requirement

The objective of the SELECTOR is to reduce the vehicle's position uncer-

tainty to a certain amount. Since the new uncertainty of the vehicle location is

determined by the bearings for landmarks of known positions, the accuracy of

those bearings determine the accuracy of the new vehicle position. We now

* . . . ..
describe how to express this accuracy requirement as a minimum focal length for

w‘rﬁ ——
-—

the image in which we identify that landmark.

The achieved angular accuracy is determined by the pointing error of the

e
S e

pan/tilt mechanism , the error in orientation estimation and the width of a pixel

in the image where the landmark is located. A pixel will subtend a certain angle

in the field of view (called the pizel angle® ), that depends on the focal length of
the lens, the width of the camera’s imaging surface, the spatial resolution
(number of pixels across) of the camera, and the position of the pixel in the
image. Since the position of the landmark in the image can not be kncwn at this

point, we approximate it by the center pixel of the image.* Using this approxima-

film size

tion, we have pixel angle = arctan( focal length - resolution

). The pointing eiror, ¥,

and orientation error, a, are expressed as degrees in the pan and tilt direction.

These errors in the pan direction are then added to the pixel angle to get the

3 This is also known as the instantaneous field of view or IFOV, since the pixel is tke result of one instuntaneouns
sampling of the scene by the imaging device

4 This is not a critical assumption since even in the largest field of view the pixel angle would only vary by a very
small amoant across the entire image.
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total angular error. That is,

film size
focal length - resolution

total angular error = ¥ + a + arctan( ). (6)

To calculate the focal length needed to achieve the required accuracy, we

simply solve for focal length in equation (6), as follows:

film size
tan( minimum angular error -~ (¥ + a)) - resolution °

minimum focal length =

With this minimum focal length established, we can then know when the bearing
of a landmark, found in a particular image, meets the accuracy specifi-ations

given for that landmark.

4.2.1.3. Determining minimum size

We still need to insure that the landmark we are searching for will appear in
this initial image with a size that maintains at least some of its unique identify-
ing features. The minimum spatial resolution (number of pixels across the land-
mark), min-pizels, needed to insure this is determined a priori for each landmark.

The minimum focal length, min-fl, is then given by

film size
tan(min —pizels - pixel angle)’

min-fl =

4.2.1.4. Constraint checking

To visualize the restrictions that these constraints put on our choice of focal
length, refer to Figure 4.2 where they are displayed on a focal length axis. The
thick part of the line axis represents the rangz of available focal lengths. Two of
the constraints specify ranges bounded by minimum values and one specifies a

range bounded by a maximum value. If these ranges overlap in a region that has
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some part within the range of available focal lengths, then a suitabl» image is
obtainable. In fact, the most desirable image, in light of these constraints, is

most likely the one with the longest focal length in this acceptable region.

If the limiting factor for our choice of focal length is the maximum available
focal length, then we can simply use a window from an image with a shorter focal
length as long as this shorter foca! length obeys the other constraints. This, in
fact was done in the implementation of Chapter 5. Note that in a more sophisti-
cated system, if the limiting factor is the minimum available focal length (i.e., the
acceptable range is entirely below it), then several higher resolution images with
smaller fields of view could be used to systematically cover the field of view that

the original image would have covered.

4.2.2. Landmark model/MATCHER suitability

Recall that the MATCHER selects points to match based on gradient direc-
tion. Points are matched only if their gradient direction appears frequently in
the model compared to its occurance in the image. Without future knowledge of
the image, we can only assume that a model with a uniform distribution of gra-
dient direction would be best. This is because if the model has a frequent gra-
dient direction that also occurs frequently in the image, then this gradient direc-
tion will probably not be matched, causing a disproportionately large number of
model points not to be matched. Therefore, we can use, for example, the stan-
dard deviation of the gradient direction counts as a measure of how uneven the

distribution is for the model. This can then be compared to other landmarks to




help determine the best choice.

4.3. Determining the effect of identification

This section describes how to determine the extent to which finding a partic-
ular landmark’s bearing would effect the vehicle's position uncertainty. To do
this, we first explain how that landmark’s bearing would be used (with other
landmarks’ bearings) to help determine the new vehicle location. Then, we show

how to obtain an estimate of the uncertainty for this new vehicle location.

Given a pair of bearings (B,,B,) for two landmarks with known positions
(z1,v1) and (z2,y2), we can find the actual vehicle location by intersecting the lines

passing through (z,y,) with angle B, and (z,,y,) with angle B,. See Figure 4.3. If

the bearing B, to landmark L, is only known to within +6,, then the possible
lines passing through (z,,y,) would sweep out a wedge W, of angular width 24, on
the ground plane. See Figure 4.4a. Since for each landmark, L,, found ihe vehi-

cle is constrained to lie in the planar wedge W,, then the vehicle must lie in the

convex polygon formed by the intersection of these wedges. See Figure 4.4b.

The size and shape of ihis convex polygon is determined by the width of
each wedge at their intersection and the angles at which they intersect. The -]
width U, of a wedge W, at a distance 4, from L, is given by U, == 2-4, -tan0,, where
40, is the uncertainty of the landmark bearing as calculated in Equation (6).

Therefore, the effect of finding L,'s bearing on the vehicle location uncertainty is
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proportional to the angular uncertainty 4, of the bearing and the distance from

L, to the actual vehicle location. Since the actual vehicle location is not known at




this point, we approximate it by the assumed current position.

Now, since the vehicle is known to be within a certain distance r of the
assumed current position, we can initially constrain the vehicle to lie within a
convex region centered on the current position. For the purposes of this analysis,
we shall assume that this region is a square of dimension 2r. Therefore, initially
the effect of finding landmark L, is that of firding the intersection of the wedge
W, and the square region of uncertainty. We will now discuss briefly a simple

method for finding this intersection and evaluating its size.

A patural representation for the wedges and the initial uncertainty regicn is
the intersection of halfplanes, primarily because the wedge is unbounded in one
direction and our initial uncertainty region is convex. The initial uncertainty
region is represented by the intersection of four halfplanes. Then we add to this

set the two half planes which represent the first wedge. We now have the inter-

section of six halfplanes defining a new convex polygon® (see Figure 4.5a). As
wedges representing the subsequent landmarks are added to the set of halfplanes,
the convex polygon (resulting from the intersection of the halfplanes ia the set)

will get smaller and smaller (see Figure 4.5b).

To express in one parameter the uncertainty represented by a convex
polygon, we find the two vertices which are furthest apart. Half of the distance
between these two vertices is a reasonable approximation of the ‘‘radius” of this
polygon. This *‘radius” can be compared to the original r to dctermine to what

extent the vehicle’s position uncertainty has been reduced.

8 The intersection of any number of halfplanes is a convex polygon.
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4.4. The SELECTOR continues

By maximizing both the ease of detection and the effect of identification as
discussed in the previous sections, the SELECTOR arrives at a set of landmarks.
During this process, it calculates a direction and optimal focal length for each
landmark that specify an image in which that landmark can be identified. The
SELECTOR then directs the FINDER to find the subsets of landmarks in their
respective images. (One might search for only a subset to limit the amount of
effort devoted to a potentially fruitless search; if some critical subset canrot be

identified, a completely new set of landmarks could be chosen.)

The FINDER returns its best estimate of the locations of those landmarks
along with the bearings calculated for them. From these bearings and the loca-
tions of the landmarks, the SELECTOR then computes new estimates of actual
location and uncertainty. These caiculations were described in Section 4.3. If all
the landmarks were found as expected, then this new uncertainty will meet the
initial uncertainty requirement. However, if cnly a subset of the landmarks
selected for the set were found, they could, in some circumstances, determine an

acceptable uncertainty. If they do not, then the SELECTOR can chocse another

combination of landmarks for analysis.
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5. An Implementation

This chapter describes a partial implementation of the system described in
the first four chapters in an indoor environment. The FINDER and MATCHER
are completely implemented to the extent possible with the available equipment.
The SELECTOR is partially implemented. The parts not implemented on the

computer were done by hand and results supplied to the system when needed.

5.1. Experimental Environment

The environment was a terminal room adequately lit from above by several
rows of fluorescent lights. The camera used was a Cohu 2200 with a manually
adjustable zoom lens having a range of 20mm to 80mm. The camera was
mounted on a large tripod with manual adjustments for pan, tilt, and spin. Pro-
gramming was done in both C and Franz Lisp on a VAX 11/780 running under
the UNIX operating system (BSD 4.2). For information on the interface between

Franz Lisp and C see [Andr84).

5.2. Programming

Top level control of both the SELECTOR and FINDER is done with the
YAPS production rule system for flexibility and extensibility. YAPS integrates
naturally with Franz Lisp, as the right hand side of YAPS rules can be arbitrary

1
sequences of lisp expressions. Lisp functions comprise most of the FINDER and ?
]
)
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SELECTOR and are called from the right hand side of simple YAPS rules or

from other lisp functions.

The database is comprised of YAPS facts and knowledge stored as lisp data
structures. The YAPS facts are used for high-level decision making and the
firing of YAPS rules. The lisp data structures are generally symbols having pro-
perty lists containing global information for the system. For instance, all the

landmark information is stored in this manner.

The MATCHER is in two parts, the Hough transform and the Hough space
analysis. Both were written completely in C, but are used as lisp functions. This
is the case with many other functions which might have required a large amount
of numerical computation, such as the calculations for the minimum and max-

imum angular difference between landmarks (in Section 3.1.1).

5.3. Operation of the system

As mentioned above, only parts of the CELECTOR module are curreatly
implemented. These parts are the computation of a minimum image to include a
particular landmark and the triangulation to arrive at the new position. There-
fore, in this example the author functioned as the SELECTOR for many tasks.
What follows is a simplified step by step description of the operation of .he sys-

tem (divided into sections labeled with the module currently in control).

5.3.1. The SELECTOR selects

The room was first examined for intercsting landmarks which could be easily

located and seemed disparate enough to result in a small uncertainty for the new
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position. It was decided that three landmarks would be a good number for
demonstrating the system. They were a wall phone, a coffee cup taped to a
blackboard, and a wall outlet with a cord plugged into it. The positions and
sizes of these landmarks were measured precisely and entered into the database.
The layout of the landmarks in the room is shown in Figure 5.1. The existance
of suitable images for these landmarks was then verified followed by the determi-

nation of those suitable images with the longest focal lengths. They were as fol-

lows:
Image speciiications
Bearing of
Landmark | image center | Focal length (mm) | FOV (degrees
phone 58 54 19
cup 98 96 8 !
plug 139 114 5

Templates for eventual use by the MATCHER were then created for these
landmarks. This was done by obtaining high resolution images in which the
landmarks were distinct from the surroundings. These images were then reduced
to the size they would appear at from the vehicle’s assumed current position.
The gradient direction was then calculated at strong edge points to obtain a set

of object points suitable for the MATCHER (see Chapter 2).

The landmarks chosen were then specified to the FINDER along with the

corresponding images specified above.

-33.

'''''''''''''''''''''''




5.5.2. The FINDER obeys

The FINDER then requested that the camera be positioned to obtain each of
the three images designated. These images are shown in Figure 5.2. After each
one was obtained, it called the MATCHER routines to find likely locations for
the corresponding landmark in the image. The MATCHER used a Laplacian of
size 3x7, the top 25 percentile of the edge points, the top 15 percentile of those
based on gradient direction informativeness, and matched image points whose
gradient directions were within 15 degrees of an object point’s gradient direction.

This resulted in the following:

Possible image locations
Phone Cup Plug

phonel: (85,31) 100 | cupl: (84,63) 63 | plugl: (53,27) 25
cup?2: (60.66) 28 | piug2: (39,30} 19
plug3: (39,26) 19
plug4: (53,32) 18
plug5s: (53,38) 17

Figure 5.3 shows these possible locations on the original images. These three lists
of likely locations, with their respective confidences, were then checked against
each other for angular consistency as described in Chapter 3. The resuiting con- ]
sistency graph is shown in Figure 5.4a. The graph was then pruned resulting in
the removal of 3 out of the 8 nodes. Figure 5.4b shows the graph after pruning
and Figure 5.5 shows the remaining possible locations overlaid on the images.

The maximal complete subgraphs were three 3-cliques as follows:
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Maximzl comple‘e subgraphs
1) ( pbhonel(100) cupl(63) plugl{25))
2) ( phonel(100) cupl(63) plug4(18))
3) ( phonel(1C9) cupl{63) plug5(17))

These maximal complete subgraphs were then evaluated using the confidences to
arrive at the best, which was the third one above. In Figure 5.8, the template
points that were actually used in the matching are shown overlaid on their
respective original images at the final locations. The bearings were then calcu-

lated for these image locations and the values passed back to the SELECTOR.

5.3.3. The SELECTOR triangulates

The SELECTOR then simply triangulated, using the landmark bearings
with their known locations, to get the new position. The new uncertainty was
then calculated (as described in Chapter 4). These results are displayed graphi-

cally in Figure 5.7.

T LT P
P L A
I 3P NP S0

«35-

.................................................




‘‘‘‘‘ L aau 2 g - - . - hsmal Jans y— - — M Ancre e e e e Svaa- i e umissham e a4 —

6. Related Literature

Ballard introduced the generalization of the Hough transform [Ball81] and
presented the parameterization used in this thesis in Ballard and Brown [Ballg2)].
Davis presented extensions to the generalized Hough transform for matching
hierarchically crganized point patterns or patterns of line-segments [Davi82.
Hakalahti, Harwood and Davis [l1aka83] ccnstrained matching based on local pro-
perties of contour points and Davis, Kitchen, Hu and Hwang [Davi82] used the

generalized ilough transform to match patterns of blobs and ribbons.

The generalized Hough transform can also be used for recognizing three-
dimensional objects in images. If our landmarks were represented as 3D models,
and only very poor estiinates were available of our position, then such 3D match-
ing would be of interest. Silberberg [Silb84a,Silb84b] considered the special case S
where only position and rotation on the ground plane are unknown. This would
be a good representation for our problem. See also Ballard and Sabah [Balis3],

and Stockman & Esteva [Stoc84].

Research on autonomous vehicles has led to several papers describing other
methods of automatic position determination. Fukui [Fuku81] presented a
method using a specific diamond-shaped landmark and using distortion of the

shape to determine the vehicle's relative position. This process was extended in

Courtney and Aggrawal [Cour83]. Related papers under the general category of
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camera calibration are Hung, Yeh & Mansbach [Hung83] and Hung, Yeh & Har-
wood [Hung&4]. Methods using acoustic or laser ranging sensors are described in

Crowley [Crow83] and Jarvis [Jarv83], respectively.
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a) The original image b) Symmetric IX-nearest neighbor smoothing

¢) Zero-crossings of the Laplacian of a Gaussian d) Symmetric contrast operator applied

. : ; f) Gradient directions at edge points
e) Edge points picture

Figure 2.1 [Follows the MATCHER through each stage of image processing for
locating a tape dispenser near a coffee maker




o) Template displayed as an image h) Hough space

i) The ~olution overlaid on the Hough space j) The solutien overlaid on the original image

Figure 2.1 (continued)



ST

aussian d) Symmetric contrast operator applied

e) Edge points picture
f) Gradient directions at cdge points

Figure 2.2 The same as Figure 2.1 except for locating a brush




g) Template displayed as an image h) Hough space

i) The solution overlaid on the Hough space  j) The solution overlaid on the original image

Figure 2.2 (continued)
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a) Using 1005 of the gradient directions

¢) Using 209 of the gradient directions

b) Using 50¢C of the gradient directions

d) Using 1576 of the gradient directions

Figure 2.3 Results of gradient direction informativeness (GDI) filtering for

-

the tape dispenser



a) Using 100°C of the gradient dircctions b) Using 50°¢ of the gradient directions

c¢) Using 30% of the gradier:t directions d) Using 1597 of the gradient directions

Figure 2.4 Same as< Figure 2.3 except done for the brush



a) The tape template

b) The brush template

Figure 2.5  The templates after GDI filtering
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a) Determining the range of angular differences

b) The angular difference between peaks

Figure 3.1  Consistency between peaks
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Figure 3.2  Proof of a circumferential solution
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Figure 3.3  Counter-examples to some simple non-solutions
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a} Original graph

b) After one iteration of k-star

¢) After two iterations of k-star;

S
o

bold arcs are after three iterations

Figure 3.4  Graph pruning with k-stars and k-fans
O: will be deleted in the next iteration
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Figure 4.3  Triangulation
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a) Possible positions given one landmark’s bearing

b) Possible positions with three landmarks' bearings

Figure 4.4  Determining position uncertainty




a) With one wedge and a square
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b) With several wedges and a square

Figure 4.5 Halfplanes
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Figure 5.1  Layout of the experiment room




a) phone
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¢) plug

Figure 5.2  Original images for the landmarks .
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figure 5.3  Possible locations for the landmarks
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Figure 5.4 Pruning of the consistency graph
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a) phone
b) cup
¢) plug
Figure 5.5  Results of pruning shown on images
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g Figure 5.6  Models overlaid to show final match
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